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Abstract

This note is a reading report mainly based on [1] and [2]. And
we will state Ribet’s Theorem and follow its origin proof. First We
will introduce modular curves and modular forms, and construct a
Galois representation concerning a specific modular form. After that,
we will state two stronger versions of Ribet’s theorem and prove the
latter one.
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1 Introduction and Background
Let K/Q be a finite extension, and ClK be its ideal class group. In algebraic
number theory, we know that ClK is a finite abelian group with order hK ,
i.e. for any fractional ideal I, there exists n∈ Z, s.t. In is principal.

When K = Q(µp), Kummer has found a powerful result relating to Fer-
mat’s Problem.
Proposition 1 (Kummer, in 1851). (cf. [4]) If p∤ hQ(µp), i.e. the p-sylow
subgroup of ClQ(µp) is trivial, then xp + yp = zp has no solution in Z3.
Proof. We sketch the proof. We may assume p > 3, p ∤ (x− y) and x,y,z are
coprime to each other in Z. Let µ = µp, we have

xp + yp = (x+ y)(x+ µy) · · · (x+ µp−1y) = zp.

First we aim to prove that principal ideals {(x + µiy)} are coprime to each
other in Z[µ]. Therefore, using the equation above, we conclude that (x +
µiy) = αp

i , for some fractional ideal Ii. Since the left hand side is principal,
and p ∤ hK , each Ii is principal, i.e. Ii = (αi) where αi ∈ Z[µ].

Then we claim that there exists r ∈ Z, s.t. x + µy − µ2rx − µ2r−1y ≡ 0
(mod p). Through a little discussion, we are done.

And if p ∤ hQ(µp) for all prime p, then Fermat’s Last Theorem is done.
But we have a counterexample indeed. For p=37, ClQ(µ37)

∼= Z/37Z, h=37.
Thus we may be interested in whether the order of the p-Sylow subgroup of
ClQ(µp) is divisible by p.

Henceforth, we denote K = Q(µp), and ∆ =Gal(K/Q) ∼= (Z/pZ)∗. Then
∆ has a natural action on ClK , i.e., σ[I] = [σ(I)]. In addition, ClK has a
Z-module structure, i.e., n.I = In.

Let C = ClK/ClpK be an Fp -vector space. Then p|hK iff C 6= 0.
There is a decomposition lemma making C clear.

Lemma 1 (Decomposition Lemma). (cf. [5]) If R is a commutative ring
containing {〈µn〉} and 1

n
. G is an abelian group with order n, and Ĝ =

Hom(G,R×) be all group morphisms. Then for R[G] -module M, we have

M =
⊕
χ∈Ĝ

M(χ),

where M(χ) = {m ∈ M : σm = χ(σ)m for every σ ∈ G}, χ is a Dirichlet
character modulo n.

2



Proof. let eχ = 1
n

∑
σ∈G χ(σ)σ−1, then we can see∑

χ∈Ĝ

eχ = 1, eχeχ′ = 0, eχeχ = eχ.

Thus, for all m ∈ M , m can be uniquely written as
∑

χ eχm.

View C as Fp[∆] -module, let χ : ∆ ∼= (Z/pZ)∗ = F∗p. Note that {χi : 1 ≤
i ≤ p− 1} = Hom(∆,F∗p), we have:

C =

p−1⊕
i=1

C(χi),

and every C(χi) is an Fp[∆] -vector space, where σx = χi(σ)x for x ∈ C(χi)
and σ ∈ ∆.

Let t
et−1 =

∑∞
n=0Bk

tn

n!
, where Bn are called Bernoulli numbers. In 1932,

Herbrand found the following theorem.

Theorem 1 (Herbrand). (cf. [6]) Let k ∈ [2, p − 3] be an even integer. If
C(χ1−k) 6= 0, then p|Bk.

The proof is in [5]. What we concern is Ribet’s result in 1970s:

Theorem 2 (Ribet). (cf. [1]) Let k ∈ [2, p− 3] be an even integer. If p|Bk,
then C(χ1−k) 6= 0.

This note will be organized as follows. In the following two chapters, we
will state and prove several basic definitions and facts in Modular Curves
and Modular Forms. And in the fourth chapter, we will follow Ribet’s origin
proof, which first claims two stronger propositions and proves the latter one.

2 Modular Curves and Modular Forms
In this section, we will introduce modular curves, modular forms and use the
algebraic structure of modular curves to construct a Galois representation.
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2.1 Basic Definitions and Facts
2.1.1 Modular Curves and Modular Forms

First, let us explain the motivation. We want to construct a kind of Riemann
Surface. Since simply-connected Riemann Surfaces have been classifed, i.e.
they are C,H, and CP1, let’s consider a group action on H and its induced
quoient space, i.e. H/G. To make it be a Riemann Surface, we consider
G ≤ SL2(Z).

Definition 1 (Congruence Group). Γ ≤ SL2(Z) is called a congruence group

if there exists N, s.t. Γ(N) ⊂ Γ, where Γ(N) = {
(
a b
c d

)
∈ SL2(Z) :(

a b
c d

)
≡

(
1 0
0 1

)
(mod N)}.

In general,

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
(mod N)}
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Γ1(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)}

4

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)}.

Definition 2 (Modular Curves). Y (Γ) := H/Γ = {Γτ : τ ∈ H}, is the set
of orbits. X(Γ) := H∗/Γ, where H∗ = H ∪ P 1(Q).

Fact: X(Γ) is a compact Riemann Surface. This requires careful discus-
sion on its neighborhoods, elliptic points(we call Γτ ∈ X(Γ) is an elliptic
point(here τ ∈ H), if there exists non-trivial γ ∈ Γ, s.t. γτ = τ) and
cusps(the points equivalent to P 1(Q)).

Example 1. X(SL2(Z)) ∼= S2. (See the figure 1 below.)
Note that the fundamental domain for SL2(Z) is D below, and the cusp

of X(SL2(Z)) is ∞, we think this point lying in the infinitely far up the
imaginary axis. Thus we imagine two lines x = 1/2 and x = −1/2 intersect
at the ∞, since these two lines and two arcs on the boundary are identified
respectively, we get a Riemann sphere.
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Figure 1: the fundamental domain for SL2(Z)(This picture comes from [2])

Now we introduce modular forms, and its motivation is to analogize mero-
morphic forms. We will see later that Theorem 4 will tell us the relation.

Definition 3 (Modular Forms of weight k with respect to Γ). f : H → C is
called modular forms of weight k with respect to Γ (i.e. f ∈ Mk(Γ)) if:

• f is holomorphic in H,

• f(τ) = (cτ + d)−kf(γ(τ)) =: (f [γ]k)(τ), for any γ =

(
a b
c d

)
∈ Γ,

• f [α]k is holomorphic at ∞ for any α ∈ SL2(Z).

Let me explain the meaning of ”holomorphic at ∞”. We know that since
Γ is a congruence subgroup, so there exists N, Γ(N) ⊂ Γ, which implies that

γ =

(
1 N
0 1

)
∈ Γ. Using property(2) above, f [γ]k = f , we have f(z +N) =

f(z), so there is a natural fourier expansion, i.e.

f(z) =
∑
n∈Z

ane
2πinz

N =
∑
n∈Z

anq
n
N .

Let’s consider another function g(q), which has a Laurent expansion g(q) =∑
n anq

n. Thinking of ∞ as lying far in the imaginary direction, then z → ∞
iff q → 0. We say a function is holomorphic at ∞ iff an = 0 for all n<0.

Since f [α]k is invariant under α−1Γα, which contains α−1Γ(N)α = Γ(N),
therefore, (3) is well-defined.

Moreover, if a0 = 0 in f [α]k’s fourier expansion for all α ∈ SL2(Z), then
f is called a cusp form of weight k respect to Γ, i.e. f ∈ Sk(Γ).

If we replace ”holomorphic” by ”meromorphic”, then the set is Ak(Γ),
called Automorphic form.

Note that these function are NOT well-defined on X(Γ).
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Proposition 2 (Decomposition of Mk(Γ1(N))).

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ),

where Mk(N,χ) = {f : f [γ]k = χ(dγ)f for all γ ∈ Γ0(N)}, and χ is a
Dirichlet character modulo N.

Proof. Note that Γ0(N)/Γ1(N) ∼= (Z/NZ)∗. And f is invariant under Γ1(N),
thus the action of Γ0(N) can be realized as (Z/NZ)∗.

In the theory of Compact Riemann Surface, there are two natural objects.

Definition 4. Pic0(X) = Div0(X)/Divl(X).

Definition 5. Jac(X) = Ω1
hol(X)∧/H1(X,Z).

Using Riemann-Roch Theorem, the right hand side is a complex torus of
dimension g, where g is the genus of the compact Riemann Surface X.

Abel Theorem states that the above two objects are isomorphic.

Theorem 3 (Abel Theorem). Let X be a compact Riemann Surface, if g > 0,
then

Pic0(X) ∼= Jac(X), [
∑
x

nxx] 7→
∑
x

nx

∫ x

x0

The next theorem states that automorphic forms and k/2 forms are bi-
jective in the sense of complex vector space.

Theorem 4. Let k be an even positive integer, and Γ be a congruence group
of SL2(Z). The following map is an isomorphism of complex vector space.

ω : Ak(Γ) → Ω⊗k/2(X(Γ))

In particular, ω induces an isomorphism from S2(Γ) to Ω1
hol(X(Γ)).

Proof. We sketch the proof. We know that π : H → X(Γ) induce the map
π∗ : Ω⊗k/2(X(Γ)) → Ω⊗k/2(H). Thus given a meromorphic differential ω on
X(Γ), we get a meromorphic differential f(τ)(dτ)k/2. We can prove this f is
what we want since it’s invariant under Γ.

The converse is tricky.
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2.1.2 Hecke Operators

We can define two Operators T from Mk(Γ1(N)) to Mk(Γ1(N)). Let f be a
modular form respect to Γ1(N), i.e. f ∈ Mk(Γ1(N)).

Let α ∈ GL+
2 (Q), and Γ1(N)αΓ1(N) =

⋃
i finite Γ1(N)βi for some βj(∈

M2(Z)). We aim to define Tf ∈ Mk(Γ1(N)) corresponding to α. It’s neces-
sarily invariant under Γ1(N). Therefore, it’s natural to define as follows:

Tf =
∑

i finite

f [βj]k.

Thus given an element in GL+
2 (Q), we have what is called double coset

operators.

Definition 6 (〈d〉). For (d,N) = 1, let α0 =

(
a b
c δ

)
∈ Γ0(N),where δ ≡

d mod(N). Since for any α =

(
a′ b′

c′ δ′

)
∈ Γ0(N),where δ′ ≡ d mod(N), we

have Γ1(N)αΓ1(N) = Γ1(N)α0(usingΓ1(N) / Γ0(N)). So there is a unique
operator 〈d〉.

〈d〉f = f [α0]k.

For (n,N) > 1, 〈d〉f is defined to be 0.

It’s easy to see that:

• 〈d〉〈e〉 = 〈e〉〈d〉 = 〈de〉,

• Mk(N,χ) = {f : 〈d〉f = χ(d)f for all d ∈ (Z/NZ)∗}.

Definition 7 (Tn). Let p be a prime and Γ1(N)

(
1 0
0 p

)
Γ1(N) =

⋃
j Γ1(N)βj.

Then we define:

Tpf = f [Γ1(N)

(
1 0
0 p

)
Γ1(N)]k :=

∑
j

f [βj]k.

In general,

T1 = Id and Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , for r ≥ 2,

Tnm = TnTm for (n,m) = 1.
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We list several facts we will use.

• Tm〈n〉 = 〈n〉Tm,

• The above two Hecke operators T define a map from J1(N) = Jac(X(Γ1(N)))
to itself.

We sketch the proof of the fact(2). Since S2(Γ) ∼= Ω1
hol(X(Γ)), We have

T : S2(Γ1(N))∧ → S2(Γ1(N))∧ and the following commutative diagram:

S2(Γ1(N))∧

��

T // S2(Γ1(N))∧

��
Ω1

hol(X(Γ1(N)))∧ T // Ω1
hol(X(Γ1(N)))∧

And T will map a loop to another loop, so it induces T : J1(N) → J1(N).

Definition 8. A non zero modular form f ∈ Mk(Γ1(N)) is called an eigen-
form if it is an eigenform for the Hecke Operators Tn and 〈n〉 for all n ∈ Z+.
Moreover, if a1(f) = 1, then f is called a normalized eigenform.

Since Mk(N,χ) = {f : 〈d〉f = χ(d)f for all d ∈ (Z/NZ)∗}, for every
eigenform f, there exists a Dirichlet character χ, f ∈ Mk(N,χ).

Definition 9. TZ = Z[{Tn, 〈n〉 : n ∈ Z+}], the Hecke algebra over Z.

Proposition 3. TZ is a finite generated Z module.

Proof. TZ can be viewed as a submodule of End(H1(X1(N)),Z).

Corollary 1. Let f be a normalized eigenform, then Kf = Q({an(f)}) is a
number field.

Proof. For any normalized eigenform f, f ∈ Mk(N,χ), there is a surjective
map from TZ to Z[{an(f), χ(d) : n, d ∈ Z>0}]. Since

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , for r ≥ 2,

Let r=2 and take p, p′ be two prime numbers, s.t. p ≡ p′ (mod d), then we
have Z[{an(f), χ(d) : n, d ∈ Z>0}]=Z[{an(f) : n ∈ Z>0}]. Thus Z[{an(f) :
n ∈ Z>0}] is a finitely generated Z module, and Q({an(f) : n ∈ Z>0}) is a
finite extension over Q.

Let d denote the dimension of Kf over Q.
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2.2 The Algebraic Structure
In this section, we introduce the algebraic structures of X1(N) and Af , which
have a GQ action and induce an l-adic representation.

Henceforth, we assume f ∈ S2(Γ1(N)) be a newform at the level N and an
eigenform of the Hecke algebra TZ. J1(N) = Jac(X1(N)), Kf is its number
field. Here is a map:

λf : TZ → C, T f = λf (T )f

and its kernel If = ker(λf ) = {T ∈ TZ : Tf = 0}.

2.2.1 Abelian Variety associated to f

Definition 10. The Abelian Variety associated to f is defined to be

Af = J1(N)/IfJ1(N).

Let Vf = Span ({fσ|σ : Kf → C is an embedding}), a subspace of S2 =
S2(Γ1(N)), V ∧f is its dual space ⊂ S∧2 . Λf = H1(X1(N),Z)|Vf

. It’s natural
to define

J1(N) → V ∧f /Λf , [ϕ] 7→ ϕ|Vf
+ Λf .

Proposition 4. The above homomorphism induces an isomorphism:

Af
∼= V ∧f /Λf , [ϕ] + IfJ1(N) 7→ ϕ|Vf

+ Λf

And the right hand side is a complex torus of dimension d = [Kf : Q].

We omit the proof, and what we are concerned about is its complex torus
structure of dimension d.

2.2.2 X1(N) is algebraic over Q

Compact Riemann Surface is algebraic. But X0(N), X1(N) can be taken as
algebraic curves over Q.

Henceforth, X1(N) denotes the modular curve as a nonsingular algebraic
curve over Q. Let X̃1(N) denote its reduction at Fp, and X1(N)C be our
origin definition, i.e. H∗/Γ1(N).
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Theorem 5 (Eichler-Shimura Relation). Let p ∤ N. The following diagram
commutes.

Pic0(X1(N))

��

Tp // Pic0(X1(N))

��

Pic0(X̃1(N))
σp,∗+⟨̃p⟩∗σ∗

p// Pic0(X̃1(N))

Here

• σp([x0, x1, · · · , xn]) = [xp
0, x

p
1, · · · , xp

n],

• σp,∗([
∑

Q]) =
∑

[σp(Q)],

• σ∗p([
∑

Q]) = p
∑

[σ−1p (Q)].

Note that in Fp, Frobenius is an isomorphism, thus the above map is well-
defined.

2.2.3 l-adic Galois Representation

Since X1(N) is defined over Q , there is a natural GQ action on Pic0(X1(N)).
For any σ ∈ GQ, any x = (x0 : x1 : · · · : xn) ∈ X1(N), σ(x) =

(
σ(x0) : σ(x :

1) : · · · : σ(xn)
)
∈ X1(N).

Thus for each n, there is a commutative diagram.

GQ

�� **VVVV
VVVV

VVVV
VVVV

VVVV
VV

Aut(Pic0(X1(N))[ln]) Aut(Pic0(X1(N))[ln+1])oo

We state without proof that the following two maps are isomorphisms.

in : Pic0(X1(N))[ln] ↪→ Pic0(X1(N)C)[l
n](∼= Jac[ln] ∼= (Z/lnZ)2g)

πn : Pic0(X1(N))[ln] ↠ Pic0(X̃1(N))[ln], if p ∤ lN.

So these induce a homomorphism

ρX1(N),l : GQ → GL2g(Zl) ⊂ GL2g(Ql).
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Theorem 6. Let l be prime and let N be a positive integer. The Galois
representation ρX1(N),l is unramified at every prime p ∤ lN . For any such
p, let ℘ ⊂ Z be any maximal ideal lying over p. Then ρX1(N),l(Frob℘) satisfies
the polynomial equation.

x2 − Tpx+ 〈p〉p = 0.

We say ρ is unramified at prime number p, if for all ℘ lying over p, I℘,
the inertia group, is contained in ker ρ.

Proof. First note that D℘/I℘ ∼= GFp , and there is a commutative diagram:

D℘

π

��

// Aut(Pic0(X1(N))[ln])

��

GFp
// Aut(Pic0(X̃1(N))[ln])

Since I℘ is the kernel of π, and right vertical arrow is isomorphic, I℘ is
contained in the kernel of the map across the top. Since n is arbitrary, this
means I℘ is contained in the kernel of ρ as desired.

By Eichler-Shimura Relation, we have the following commutative dia-
gram:

Pic0(X1(N))[ln]

πn

��

Tp // Pic0(X1(N))[ln]

πn

��

Pic0(X̃1(N))[ln]
σp,∗+⟨̃p⟩∗σ∗

p// Pic0(X̃1(N))[ln]

If we replace Tp by Frobp + 〈p〉pFrob−1p , this makes the diagram commutes
too, since two vertical arrows are isomorphisms, this shows

Tp = Frobp + 〈p〉pFrob−1p .

The result then follows directly.

Since ker(Pic0(X1(N))[ln] ↠ Af [l
n]) is stable unber GQ(we omit the

11



proof), the following diagram commutes.

GQ

�� **VVVV
VVVV

VVVV
VVVV

VVVV
VV

Aut(Pic0(X1(N))[ln])

��

Aut(Pic0(X1(N))[ln+1])oo

��
Aut(Af [l

n]) Aut(Af [l
n+1])oo

And
Tal(Af ) := lim

←
Af [l

n] ∼= lim
←

(Z/lnZ)2d ∼= (Zl)
2d.

As a corollary of the previous theorem, we have:

Theorem 7. ρAf ,l : GQ → GL2d(Ql) is unramified at every prime p ∤ lN .
And ρ(Frob℘) satisfies

x2 − ap(f)x+ χ(p)p = 0.

Lemma 2. Let Vl(Af ) := Tal(Af ) ⊗ Q ∼= Q2d
l . Then Vl(Af ) is a free

Kf ⊗Q Ql-module of rank 2.

We omit the proof.
Using the canonical isomorphism Kf ⊗Ql

∼=
∏

λ|l Kf,λ, we get

ρf,λ : GQ → GL(Vl(Af )⊗Kf⊗Ql
Kf,λ) → GL2(Kf,λ).

As a corollary to the previous theorem, we get the following:

Theorem 8. This representation is unramified at every prime p ∤ lN . For
any such p, let ℘ ⊂ Z be any maximal ideal lying over p. Then ρf,λ(Frob℘)
satisfies the polynomial equation:

x2 − ap(f)x+ χ(p)p = 0.

3 Several Methods in Representation Theory
In this section, we introduce several facts in representation theory.
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Definition 11 (Semi-Simplification). Let V be a finite dimensional repre-
sentation of G. 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V is its Jordan-Holder series, i.e.
Vi/Vi−1 is simple. Then

V ss :=
n⊕

j=1

Vj/Vj−1

is its semi-simplification.

Let L/Qp be a finite extension, O the ring of intergers of L, π the uni-
formizer of the unique maximal ideal of O, and F = O/π the residue field.
Let ρ : GQ → GL(V ) be a continuous representation.

Proposition 5. There exists a O-lattice Λ ⊂ V , which is GQ stable. And ρ
induces a representation ρΛ : GQ → GL(Λ) → GL(Λ/πΛ), which is called the
reduction of ρ attached to Λ. The semi-simplification of ρΛ does not depend
on the choice of Λ. Denote this unique representation by ρ, which is called
the residual representation of ρ.

Proof. We just prove the first claim. For any lattice Λ′, H = {g ∈ GLn(L) :
g(Λ′) = Λ′} is an open subgroup of GLn(L)(here we actually use its non-
Achimedian property). Hence its intersection with G = ρ(GQ), is open in G.
Since GQ is profinite, thus G is compact, we have G =

⋃
i,finite gi(H ∩G).

Let Λ =
∑

i,finite g(Λ
′), then we have a G-stable O-lattice, hence is GQ-

stable.

We have a criterion to determine whether a representation is semi-simple
or not.

Lemma 3 (Ribet’s Lemma). Suppose that L-representation ρ is simple but ρ
is NOT simple.. Let ϕ1 and ϕ2 be the characters associated to the reductions
of ρ. Then G leaves stable some lattice Λ ⊂ V for which the associated
reductions is of the form

(
ϕ1 ∗
0 ϕ2

)
but is not semi-simple.

Proof. We sketch the proof. First, we need to show that at least one of these
reductions is of the desired type

(
ϕ1 ∗
0 ϕ2

)
. Next, if all reductions of this

type are semi-simple, then ρ cannot be simple, which is a contradiction.
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4 Proof of the Ribet’s Theorem
In this section, we follow Ribet’s origin proof. First, we introduce two
stronger versions of the theorem.

Theorem 9. Let k ∈ [2, p − 3] be an even integer, and suppose that p|Bk.
Then there exists a galoisian extension E/Q containing K = Q(µp) such that

• (a)The extension E/K is everywhere unramified,

• (b)The group H = Gal(E/K) is a non-trivial p-elementary commuta-
tive group, i.e. H ∼= (Z/pZ)n,

• (c)For every σ ∈G=Gal(E/Q), σ ∈ ∆ = Gal(K/Q), and every τ ∈ H,

στσ−1 = χ(σ)1−k · τ.

Here H has a natural F∗p structure, i.e., for a ∈ Im(χ) = F∗p, and τ ∈ H,
a · τ = τa.

Proposition 6. This theorem implies Ribet’s Theorem 2.

Proof. Let M be the Hilbert class field of K = Q(µp), then E is contained in
M. Using Artin map, we have Gal(M/K) ∼= ClK as Z[∆] -module.

Note that for any σ ∈ ∆, any τ ∈ Gal(M/k) and any [I] ∈ ClK ,

σ(τ) = στσ−1, and σ([I]) = [σ(I)]

We have Gal(M/K)/Gal(M/K)p ∼= ClK/ClpK = C as Fp[∆] -module, and
is the biggest p-elementary group which is a quoient of Gal(M/K). Since
H is a p-elementary group and the quoient of Gal(M/K), this implies that
H ↪→ C.

Using (c) of the theorem, H = H(χ1−k) 6= ∅, then C(χ1−k) 6= ∅.

Let D℘ ⊂ GQ denote one of the decomposition group at the prime p, i.e.
D℘ = {σ ∈ GQ : ℘σ = ℘, p ⊂ ℘ ⊂ Z}. Let χ : GQ → Gal(Q(µp)/Q)

∼−→ F∗p.
The following theorem is stronger than the previous one.

Theorem 10. Let k ∈ [2, p − 3] be an even integer, and suppose that p|Bk.
There exists a finite extension F/Fp, and a continuous representation ρ :
GQ → GL2(F), such that
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• (1) ρ is unramified at every prime l 6= p,

• (2)ρ ∼
(
1 γ

χk−1

)
, γ : GQ → F is non-trivial,

• (3)ρ|D℘ is semi-simple.

Proposition 7. The theorem 10 is stronger than the theorem 9.

Proof. Using the theorem 10, we have the following diagram:

E := E ′K = Qker γ
⋂

kerχ

iiii
iiii

iiii
iiii

i

SSS
SSS

SSS
SSS

SSS

K = Q(µp) = Qkerχ

UUUU
UUUU

UUUU
UUUU

E ′ = Qker ρ

llll
llll

llll
ll

K ′ = Qkerχk−1

Q

Let H ′ = Gal(E ′/K ′), then H ′ ∼= kerχk−1/ ker ρ = kerχk−1/ kerχk−1⋂ ker γ.
Since γ : kerχk−1 → F, this induces γ : H ↪→ F. Thus H = Gal(E/K) ∼= H ′

is p-elementary group.
For any prime l 6= p, any λ lying over l, we have Iλ ⊂ ker ρ, this implies

that Qker ρ ⊂ QIλ . Therefore, for any prime l 6= p, E ′/K ′ is unramified.
Choose p = ℘

⋂
OE′ in E ′, we claim p over the unique p in K ′ lying over

p, is unramified. If we prove this claim, since E ′/K ′ is galois, then (a) of the
theorem 9 is done.

Note that ρ|D℘ is semi-simple, it’s equivalent to say that the order of
ρ(D℘) can not be divided by p, i.e. p ∤ #ρ(D℘). Since

ρ(D℘) ∼= D℘/ ker ρ ∩D℘, and Ip ≤ Dp ≤ GQ/ ker ρ

we conclude that p ∤ e = #Ip. On the other hand, Ip ≤ H ′, which is a
p-elementary group, thus e = 1, i.e. E ′/K ′ is everywhere unramified. And
this implies that E/K is everywhere unramified.
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It remains to prove (c) of the theorem 9, i.e. στσ−1 = χ(σ)1−k · τ . Since
the above elements are in Gal(E/K) ∼= kerχk−1/ ker ρ, so only need to verify

ρ(στσ−1) = ρ
(
χ(σ)1−k · τ

)
,

and this is because:(
1 γ(σ)
0 χk−1(σ)

)(
1 γ(τ)
0 1

)(
1 γ(σ)
0 χk−1(σ)

)−1
=

(
1 χ1−k(σ) · γ(τ)
0 1

)
.

Let F∗p → Z∗p be the Teichmuller lift, ω : Fp → µp−1 such that F∗p
ω //

lift

��

µp−1

}}||
||
||
||

Z∗p
commutes. ε = ωk−2. We state without proof that there exists a nice eigen-
form.

Theorem 11. Suppose p|Bk, there exists a normalized cusp eigenform f
∈ S2(p, ε), f =

∑
n>0 anq

n, and a prime ideal ℘|p of the number field Kf ,
such that for every prime l 6= p, the number al is ℘-integral and

al ≡ 1 + lk−1 ≡ 1 + ε(l)l (mod p).

Recall in the previous section we have proved theorem 8 which states that
ρf,℘ is unramified at l ∤ p2, and for maximal ideal λ ⊂ Z, lying over prime
number l ∤ p2:

Tr(ρf,℘(Frobλ)) = al(f), det(ρf,℘(Frobλ)) = ε(l)l.

Proposition 8. The representation ρf,℘ is simple.

Proof. Suppose not, then its semi-simplification is ρ1 ⊕ ρ2, where ρi : GQ →
K∗f,℘. We state without proof that each ρi can be written as ρi = εiχ̃

ni ,
where χ̃ : GQ → Gal(Q(µp∞)/Q) ∼= Z∗p, the p-adic cyclotomic character, and
εi : GQ → K∗f,℘ is of finite order. Since

εi(Frobλ) = εi(l), χ̃(Frobλ) = l,

We have {
ε1(l)l

n1 + ε2(l)l
n2 = al

ε1(l)ε2(l)l
n1+n2 = lε(l).
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Thus n1 + n2 = 1, W.L.O.G,
{
n1 ≥ 1
n2 ≤ 0

, and this implies that |al| ≥ l − 1.
Due to the Ramanujan Bounds, which states that for almost all prime l,

al(f) ≤ 2
√
l, we conclude a contradiction.

Denote the ring of integer of Kf,℘ by Of,℘.

Proposition 9. There exists a GQ -stable Of,℘ -lattice Λ ⊂ V℘(Af ) such that

ρf,℘,Λ ∼
(
1 ∗
0 χk−1

)
, ρf,℘,Λ ≁

(
1 0
0 χk−1

)
.

Proof. Due to the lemma 3 and the proposition above, it’s sufficient to prove
that ρf,℘ is NOT simple, i.e. ρf,℘ ∼ 1 ⊕ χk−1. Here ρf,℘ is the unique
semi-simplification of the reduction of ρf,℘.

For any prime l 6= p, since ρ is unramified at l, so is ρ.{
tr(ρ(Frobl)) = al ≡ 1 + lk−1 mod (p),
det(ρ(Frobl)) = lε(l) ≡ lk−1 mod (p).

Consider another representation ρ′ : GQ → GL2(F), ρ′ ∼ 1 ⊕ χk−1, then
ρ(Frobl) ∼ ρ′(Frobl) for any l 6= p. By Prop 5 and Cebotarev density
theorem, which states that F = {Frobλ}{l prime,λ|l} is dense in GQ, we have
ρ ∼ ρ′ ∼ 1⊕ χk−1.

To sum up, ρf,℘,Λ has the properties that

• It’s unramified at every prime l 6= p.

• It’s NOT semi-simple.

We claim ρf,℘,Λ is what we want in the theorem 10. We omit the proof that
ρ|D is semi-simple since it’s beyond the scope here.
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